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Shannon’s capacity theorem is the main concept behind the theory of communication. It says that if the
amount of information contained in a signal is smaller than the channel capacity of a physical media of
communication, it can be transmitted with arbitrarily small probability of error. This theorem is usually
applicable to ideal channels of communication in which the information to be transmitted does not alter the
passive characteristics of the channel that basically tries to reproduce the source of information. For an active
channel, a network formed by elements that are dynamical systems �such as neurons, chaotic or periodic
oscillators�, it is unclear if such theorem is applicable, once an active channel can adapt to the input of a signal,
altering its capacity. To shed light into this matter, we show, among other results, how to calculate the
information capacity of an active channel of communication. Then, we show that the channel capacity depends
on whether the active channel is self-excitable or not and that, contrary to a current belief, desynchronization
can provide an environment in which large amounts of information can be transmitted in a channel that is
self-excitable. An interesting case of a self-excitable active channel is a network of electrically connected
Hindmarsh-Rose chaotic neurons.
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I. INTRODUCTION

Given an arbitrary time-dependent stimulus that exter-
nally excites an active channel, a network formed by systems
that have some intrinsic dynamics �e.g., oscillators and neu-
rons�, how much information from such stimulus can be re-
alized by measuring the time evolution of one of the ele-
ments of the channel? The work in Ref. �1� shows that 50%
of the information about light displacements might be lost
after being processed by the H1 neuron, sensitive to image
motion around a vertical axis, a neuron localized in a small
neural network of the Chrysomya magacephala fly, the
lobula plate. Does that mean that the H1 neuron has an in-
formation capacity lower than the information contained in
the light stimulus? Or does that mean that information is lost
due to the presence of internal noise?

In order to be able to shed light into these questions, we
need to know how to calculate the information capacity of an
active channel, and, for practical purposes, to understand
how an active channel �an active network composed by dy-
namical systems� behaves if it is set up to operate with its
information capacity. As we shall see, there is a parameter
route through which the information capacity is reached, and
this route can be established in terms of either the coupling
strengths or the level of synchronism �behavior� among the
elements forming the active channel. While information
might not always be easy to be measured or quantified in
experiments, one might be able to state about how good is an
active channel to transmit information by measuring syn-
chronization, a phenomenom which is often not only pos-
sible to observe but also relatively easy to characterize.

Synchronization is vital for modern methods of digital
communication that rely on the synchronous operation of
many subsystems �2�. Similarly, transport networks depend
crucially on the synchronous operation of each subnetwork.

If one subnetwork gets out of synchrony, the whole network
might fail to function properly. So, it would be intuitive to
say that complex systems should have subsystems that oper-
ate in synchrony for a proper functioning. In fact, synchro-
nization between neurons in the brain is believed to provide
a good environment for information transmission. This
comes from a fundamental hypothesis of neurobiology �3–6�
that synchronization �7,8� functionally binds neural networks
coding the same feature or objects. This hypothesis raised
one of the most important contemporary debates in neurobi-
ology, but is still controversial �9,10� because desynchroni-
zation seems to play an important role in the perception of
objects as well.

The analyses are carried out using among others two
quantities suitable for the treatment of information transmis-
sion in active channels, the channel capacity and the system
capacity. In short, the channel capacity measures the maxi-
mum rate with which information is exchanged between two
elements of the active channel, a path along which informa-
tion can flow in the active channel. On the other hand, the
system capacity is the maximum of the Kolmogorov-Sinai
�KS� entropy, the total amount of independent information
that can be simultaneously transmitted between all the pairs
of elements of the active channel.

Among our main results, we show that the channel capac-
ity of an active channel depends on whether the active chan-
nel is self-excitable or not �see definition in Sec. III�. Active
channels composed of non self-excitable systems �such as
Rössler-type oscillators� achieve its maximal channel capac-
ity to transmit information whenever its elements are in com-
plete synchrony. On the other hand, active channels com-
posed of self-excitable systems �such as neurons�, achieve its
maximal channel capacity when there is still at least one
degree of freedom or characteristic oscillation �time scale�
that is out of synchrony. In the case of active channels
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formed by spiking-bursting neurons �Hindmarsh-Rose elec-
trically coupled�, the maximal channel capacity to transmit
information is achieved when the neurons phase synchronize
in the slow time scale �bursting� and desynchronize in the
fast time scale �spiking�. Thus, synchronization in neural net-
works might be twofolded. Depending on the type of mea-
surement made, one can agree or disagree with the binding
hypothesis.

Therefore, in this work, we build a bridge between Shan-
non’s theory of communication �11� and the theory of infor-
mation in dynamical systems �12� contributing to the devel-
opment of a nonlinear theory of communication applied to
dynamical systems, shedding some light in these paradigms
of neurobiology. These new ideas, concepts, and theoretical
approaches unravel the relation between stimuli �13�, infor-
mation capacity, and synchronization, in a nonlinear media
of communication, the active channel, a network formed by
elements that are dynamical systems.

II. MUTUAL INFORMATION RATE

A good communication system as visualized by Shannon
comprises a transmitter who transforms a message in a signal
suitable to be transmitted through the channel and a receiver
who recovers the message from the signal. In analogy to this
definition and in order to properly deal with information
transmission in dynamical systems, we define three sub-
spaces in the active channel. The subspace � that generates a
suitable message to be transmitted, regarded as the transmit-
ter �an element of the network�, the subspace � where the
message can be recovered, regarded as the receiver �another
element of the network�, and finally the composed subspace
�� ,��, considered to form one communication channel, a
union of the subspaces � and �, also a subspace of the active
channel. So, both the transmitter and the receiver belong to
the communication channel. Herein, the more the informa-
tion is exchanged between the receiver and the transmitter,
the more information about the transmitter’s trajectory can
be realized in the receiver. The trajectory of the transmitter
�receiver� represents the evolution in time of the transmitter’s
�receiver’s� position in the subspaces � ���.

According to Shannon, the amount of information that
can be measured in the receiver x��� about the transmitter of
information x��� is given by

I��,�� = H��� + H��� − H��,��, �1�

also known as mutual information between the transmitter
and the receiver. H��� is the information produced by the
transmitter H��� the one produced �or measured in� by the
receiver and H��,�� the one produced in the composed sub-
space, also known as the joint entropy between the receiver
and the transmitter. To calculate the terms in Eq. �1� for
systems where events in the future are connected to events in
the past �systems with correlation�, one usually needs to
coarse grain the domain of the subspaces � and � into n
equal size-� �14� intervals �i and � j, with i , j=1, . . . ,n �n
=1 /��, being that Pm

��� �Pm
���� represents the probability of an

event, e.g., a trajectory point in the subspace � ��� visiting a

sequence of L intervals. The trajectory remains a time � in an
interval �. If one is working with maps, �=1. The term Pm

��,��

represents the probability of a composed event, e.g., a trajec-
tory point visiting an itinerary following a sequence of L
areas, each area delimited by the intervals �i and � j, as rep-
resented in Fig. 1. Then, in Eq. �1�, H���=−�mPm

��� ln Pm
���,

H���=−�mPm
��� ln Pm

���, and H��,��=−�mPm
��,�� ln Pm

��,��, where
we have taken the limit of �� ,��→0, L→�.

Notice that all the terms in Eq. �1� tend to infinity as
�� ,��→0, L→�. So, it is advantageous to work with terms
�=H / ��L� that measure the amount of information per time
unit, which are finite quantities in the active channel. So, we
rewrite Eq. �1� as

I��,�� = lim
L→�,��,��→0

�L����� + ���� − ���,��� . �2�

IC�� ,��= I�� ,�� / ��L� is the mutual information rate �MIR�
between the transmitter ��� and the receiver ���. Based on
the results of Ref. �15�, the term ���,�� is the KS entropy �16�
of the trajectory in the subspace �� ,�� �14�, regarded as
HKS

��,��. Imagine that the receiver has a finite physical cou-
pling with the transmitter. From Takens theorem �17�, the
entropy of a trajectory calculated in a subspace, e.g., ���,
should provide the entropy of the trajectory in the whole
space �� ,��, which leads to ����=����=���,�� and, therefore,
IC�� ,��=HKS

��,��. Independent on the coupling strength and
on the synchronization level between the receiver and the
transmitter, one arrives that the MIR is constant and given by
HKS

��,��. Naturally, in order for one to gain such an amount of
information rate, one might have to realize an infinite num-
ber of observations in the receiver’s trajectory and one has to
have access to a good trajectory projection �subspace�. How-
ever, in communication, it is desirable that information about
the transmitter can be “instantaneously” realized in the re-
ceiver. In addition, measurements performed in the subspace
� of the receiver do not necessarily contain all the informa-
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FIG. 1. The subspace � of the transmitter who generates the
information, the subspace �, where information about the transmit-
ter can be realized, and the composed subspace �� ,�� that repre-
sents a two-dimensional active channel of communication.
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tion content produced by either the whole active channel or a
communication channel. For these reasons, we introduce a
consistent definition for the MIR between two subspaces �el-
ements� in a network

IC��,�� = D1
��������� + D1

��������� − HKS
��,��, �3�

where ���� and ���� are the Lyapunov exponents of the tra-
jectories in the subspaces � and �, respectively, which mea-
sures how nearby trajectories exponentially diverge in these
subspaces, D1

��� and D1
��� are the information dimensions of

the trajectory in these subspaces �see Appendix A�, and �¯ �
is the modulus operation �18�. By doing that, we assume that
the first two terms �D1

���������+D1
���������� on the right side of

Eq. �3� measure the information produced by both the re-
ceiver and the transmitter as if they were uncoupled, i.e.,
uncorrelated “random” variables �no phase-space reconstruc-
tion �17� is employed in the measurable data from the sub-
spaces � and ��, and the last term �HKS

��,��� provides the de-
pendence between them. These are actually the basic
assumptions behind the definition of mutual information pro-
vided by Shannon �11� to random variables being transmitted
through a noisy channel. For more details about how to ana-
lytically calculate the terms ��.�, see Appendixes A and B.

III. INFORMATION CAPACITY, EXCITABILITY,
AND SUSCEPTIBILITY

In order to study the way information is transmitted in
active networks, we introduce quantities and terminologies
that assist us to better present our ideas and approaches. An
active channel is an active network constructed using Q el-
ements that have some intrinsic dynamics and can be de-
scribed by classical dynamical systems, such as chaotic os-
cillators, neurons, phase oscillators, and so on. Every pair of
elements forms a communication channel and the rate with
which information is exchanged between these elements, a
transmitter and a receiver, is given by the mutual information
rate �MIR� between them.

The channel capacity CC of a communication channel is
defined as the maximum of the MIR for this communication
channel formed by a pair of elements, the receiver and the
transmitter, with respect to many possible coupling strengths
among the elements, for a given network topology. Thus, the
channel capacity is the maximal possible amount of informa-
tion that two elements within the network with a given to-
pology can exchange, a local measure that quantifies the
point-to-point rate with which information is being transmit-
ted. Notice that a communication channel is a subset of an
active network.

The system capacity CS of an active network composed by
Q elements is defined as the maximum of the KS entropy
HKS of the whole active network �HKS�HKS

��,���, with respect
to many possible coupling strengths among the elements, for
a given network topology. The KS entropy offers an appro-
priate way of obtaining the entropy production of a dynami-
cal system. Here, it provides a global measure of how much
information can be simultaneously transmitted among all
communication channels. Therefore, CS bounds CC�� ,�� as

well as the KS entropy HKS of an active network, calculated
for a given coupling strength, bounds the MIR between two
elements IC�� ,�� calculated for the same coupling strength.
Thus,

CC��,�� 	 CS, IC��,�� 	 HKS. �4�

An active channel is said to be self-excitable �not self-
excitable� when CC
HKS

�0� �when CC	HKS
�0��, with HKS

�0� repre-
senting the KS entropy of one of the Q elements forming the
active channel, before they are coupled. Analogously, we can
also define self-excitability in terms of the channel capacity.
For a self-excitable channel, it is true that CS /Q
HKS

�0�. Thus,
in a self-excitable active channel HKS increases as the cou-
pling strength among the elements increases.

An active channel is said to be susceptible if CC
HKS
�r�

and not susceptible if CC	HKS
�r� , where HKS

�r� represents the KS
entropy of the uncoupled receiver. So, a susceptible channel
does not resist the action of the stimulus provided by the
transmitter or the dynamical alteration caused by the cou-
pling configuration in the active channel. These alterations
might also produce a self-excitable channel. It is to be ex-
pected that a self-excitable channel is also a susceptible one.

IV. THE CHAOTIC CHANNEL

Here, we analyze how a source of information can be
transmitted through a channel that stretches the amplitude of
the information signal �19,20�. The Lyapunov exponent of
the receiver �� is always positive even if there is no coupling
between the transmitter and the receiver. Part of the informa-
tion transmitted might be lost due to the presence of chaos in
the channel. We assume that a general source of information
can be modeled by a chaotic system.

A model of the chaotic channel is given by two one-
dimensional chaotic maps bidirectionally coupled �21�,

xn+1
��� = 2xn

��� + 2c�xn
��� − xn

����, mod�1� , �5�

xn+1
��� = 2xn

��� + 2c�xn
��� − xn

����, mod�1� , �6�

where the subspace of Eq. �5� is regarded as the receiver and
Eq. �6�, the transmitter. In Fig. 1, we represent the map tra-
jectory for c=0.24, the coupling strength. This map has two
Lyapunov exponents �1=ln�2� and �2=ln�2−4c�, �1 mea-
sures the exponential divergence of nearby trajectories in the
direction of the synchronization manifold defined as x���

−x���=0, and �2 the exponential divergence of nearby trajec-
tories in the direction transversal to the synchronization
manifold. The exponents ���� and ���� that measure the ex-
ponential divergence of trajectories along the subspaces �
and � are equal to max��1 ,�2�=�1, and therefore, ����

=����=�1, since the maps have equal parameters �see Sec.
VII�. One can also arrive at this result by noting that the
Lyapunov exponent of a typical 1D projection of a 2D cha-
otic set �with two positive Lyapunov exponents� is given by
the Largest exponent. Since the trajectories in the subspaces
� and � have uniform probability distribution and the infor-
mation dimension of the trajectory in the composed subspace
is D1=2, a one-dimensional projection of it should provide
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D1
���=D1

���=1 �see Appendixes A and B�. Using a result by
Pesin �16�, the KS entropy of a chaotic system is the sum-
mation of all the positive Lyapunov exponents HKS=�+�.
For a two-dimensional channel, HKS

��,�� equals the entropy of
the whole channel HKS. So, HKS=�1+�2, if �2�0, or HKS
=�1, otherwise. Therefore, we arrive that the rate with which
information can be retrieved in the receiver about the stimu-
lus generated in the transmitter is given by IC=�1−�2, if
�2�0, or IC=�1, otherwise. So, CC=ln�2� and CS=2 ln�2�.
An increase in the coupling leads to an increase in the MIR
and a decrease in HKS.

To relate the MIR with the synchronization level of this
chaotic channel, we make a convenient coordinate transfor-
mation into new variables x� and x� �see Appendix A� such
that the exponential divergence on x� is minimal �x� is ori-
ented along the contracting direction� and x� is orthogonal to
x� �x� is oriented along the expanding direction�. Such a
transformation, for the systems to be treated here, is xn

�����

=xn
���+xn

��� and xn
�����=xn

���−xn
���, with the synchronization

manifold given by xn
�=0. The mapping in this new coordi-

nate generates the conditional Lyapunov exponents �� =�1
and ��=�2. In contrast to the conditional exponents defined
in Ref. �22�, the obtained exponents produce physically con-
sistent quantities �ergodic invariants� �23� even for situations
when complete synchronization is absent. The transformed
equations of motion in these new variables provide not only
the same Lyapunov exponents but also, for this example, the
same KS entropy �HKS=�� +��, if ���0, or HKS=��, oth-
erwise� of the original equations, and advantageously supply
us with a way to understand the synchronization level be-
tween the two subsystems. �� 
�� and we recover the con-
jecture of Ref. �20� IC=�� −�� if ���0 or IC=��, otherwise.
This conjecture provides an easy way of solving Eq. �3� for
an active channel linking information to synchronization.
The more synchronization, the smaller x�, and therefore,
nearby initial conditions in this variable will diverge expo-
nentially in a smaller rate, i.e., the conditional exponent as-
sociated with this variable �� is smaller. If �� is very small,
�� can be associated with the amount of information produc-
tion of the synchronous trajectories �between the transmitter
and receiver�, otherwise, it is associated with the excitation
of the channel. The more excitation in the channel the larger
��. So, to achieve larger amounts of information transmission
it is required that either the excitation or the synchronization
level are large, or both. In this channel, as we increase the
coupling, HKS decreases due to an increase in the synchroni-
zation level, which leads to an increase in the MIR. CC
=min�HKS��CS is achieved for a configuration when the
synchronization is maximal. Therefore, the larger the cou-
pling is, the less information the whole active channel pro-
duces �KS entropy HKS�, but the larger the MIR between a
receiver and a transmiter is, which means that the more in-
formation about the transmitter can be measured in the re-
ceiver. More synchronization implies more information
transmission. This channel is not self-excitable and since
CC=HKS

�r� , it is not susceptible, because its capacity is limited
by the capacity of the receiver to generate information.

In order to calculate the MIR of a communication channel
in a large chaotic active channel, we need to use the coordi-

nate transformation x� and x�. This transformation enables
one to calculate the MIR between two subsystems as if they
were detached from the active channel. Imagine an active
channel formed by Q fully bidirectionally coupled chaotic
systems:

xn+1
�j� = 2xn

�j� + �
i=1

Q

2c�xn
�i� − xn

�j��mod�1� �7�

with j= �1, . . . ,Q�. Now, we can define �Q� �Q−1�� /2 pairs
of subspaces. For instance, the pair of subspaces formed by
the subsystem x�1� and the subsystem x�2�, with xn

�12�� =xn
�1�

+xn
�2� and xn

�12��=xn
�1�−xn

�2�. Any pair of subspaces produces
the same conditional exponents �� =ln�2� and ��=ln�2�1
−Qc�� �see Appendix A�. In fact, this system produces one
Lyapunov exponent �=�� and �Q−1� equal others �=��,
and so, our defined conditional exponents can be related to
the Lyapunov exponents even in higher-dimensional sys-
tems. So, the MIR �see Eq. �B1�� between any two sub-
systems x�k� and x�l� is IC�x�k� ,x�l��=−ln�1−Qc� bits per itera-
tion of the mapping, for c	1 / �2Q� ����0�. If there is no
coupling �c=0�, then IC�x�k� ,x�l��=0 and no information is
exchanged between both subspaces. For c	1 / �2Q�, the
larger c is the more synchronous a transmitter, say x�k�, is
with a receiver, say x�l�, and the more information is ex-
changed. The channel capacity for all communication chan-
nels is achieved for c�1 / �2Q�, when IC�x�k� ,x�l��=ln�2�
=min�HKS�, and the network completely synchronizes ���


0�. This type of active channel is not self-excitable. Notice
that the introduction of one more element into this channel
�13� does not alter CC. It is also not susceptible.

V. THE PERIODIC CHANNEL

The purpose of the present work is to describe how infor-
mation is transmitted via an active media, a network formed
by dynamical systems. There are three possible asymptotic
stable behaviors for an autonomous dynamical system: cha-
otic, periodic, or quasiperiodic. A quasiperiodic behavior can
be usually replaced by either a chaotic or a periodic one, by
an arbitrary perturbation. For that reason, we neglect such a
state and focus the attention on active channels that are either
chaotic or periodic.

The purpose of the present section is dedicated to analyze
how a source of information can be transmitted through ac-
tive channels that are periodic, channels that squeeze the
amplitude of the information signal. More specifically, chan-
nels whose receiver behaves in a periodic fashion �its
Lyapunov exponent �� is negative�.

It is to be expected that in the periodic channel a fractal
set appears, when �1	 ��2� �assuming a bidimensional chan-
nel�. This clearly imposes severe limits for the recovery of
information in the receiver. The periodic channel can be
imagined as a filter. As shown in Ref. �24�, chaotic signals
being transmitted through filters might produce an output
with higher dimension due to the appearance of a fractal set.
To see that we study the generalized baker’s map �25�,
shown in Figs. 2�a� and 2�b� and in Fig. 3. All the informa-
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tion produced in the transmitter x��� is transfered to the re-
ceiver x���, but with a time delay. To make it more clear, note
that in Fig. 2�b�, by recognizing if the received signal is
either smaller or larger than b at the iteration time n+1, one
is able to know if the position of the transmitter was lower or
higher than a, at the iteration time n. By looking at the re-
ceived signal at higher resolution, one is able to predict with
higher resolution the position of the transmitter farther away
in the past.

In order to calculate the MIR between the transmitter and
the receiver using Eq. �3� note that ����=a ln�1 /a�+ �1
−a�ln�1 / �1−a��, D1

���=1, ����=a ln�b�+ �1−a�ln�b�, and
D1

���=���� / ������ �with D1
���
1� and ���,��=HKS=����+����.

If D1
���
1, ����
0, and ����	 ������, and a fractal set takes

place. As demonstrated in Ref. �26�, the information content
of this fractal set is D1

��������� �27�. Thus, IC=����

+D1
���������−HKS, and we arrive at IC=���� per iteration,

since HKS=���� and ������D1
���=����. HKS=���� because the

fractal set does not contribute to the KS entropy of the full
chaotic map. So, CC depends on the amount of information
produced in the transmitter, a typical characteristic of a sus-

ceptible channel. Unlike the chaotic channel that is robust to
small noise intensities �28�, in the periodic channel CC might
be extremely sensitive to noise of even arbitrary amplitudes.

In active channels, the receiver might influence the trans-
mitter behavior. We can imagine a bidirectional coupling
scheme for which a periodic uncoupled receiver might make
an uncoupled chaotic transmitter to behave periodically, after
the coupling is switched on. This type of periodic channel is
thus not susceptible to adapt to stimuli, and CC=0.

The periodic channel might be relevant to understand the
role of subthreshold oscillations in the processing of infor-
mation. These oscillations are observed in the brain, in par-
ticular to regions associated with motor reaction and learning
such as the Inferior Olive �29�. They appear because groups
of neurons interact in such a way that the potential in the
neurons membrane is not sufficient to induce a spike. Usu-
ally, the oscillations are reduced to a limit cycle, a periodic
behavior.

VI. THE NEURON CHANNEL

We illustrate our ideas in a relevant type of excitable ac-
tive channel, the chaotic neural channel �30–32�, formed by a
network of electrically connected Hindmarsh-Rose �HR�
neuron models �33�. This network possesses both character-
istics of the periodic and chaotic channels, since it has both
positive and negative Lyapunov exponents. A fractal set that
occupies a small portion of the phase space coexists with a
chaotic set that occupies most of the phase space. Due to the
negative exponents, the dynamics is strongly compressed
along the stable directions, the stable manifolds. The result is
that the observable dynamics of the neurons lies along the
unstable manifolds, and thus, the negative exponents do not
contribute to the recovered information. This is a conse-
quence of the Sinai-Ruelle-Bowen �SRB� assumption.

Each pair of neurons can be treated as an active channel
of communication, one neuron �k performing the transmitter
task and the other �l the receiver. In Ref. �20�, we have
stated that the amount of information in one chaotic channel
should be always smaller than the information produced by
the network HKS. Thus, IC��k ,�l�	HKS �see Eq. �4��. By
working with large networks, composed of many elements,
we should expect that the same information travels simulta-
neously along many different channels. This property, often
desired in networks, makes it a reliable medium for informa-
tion transmission because it introduces in the network a large
amount of redundancy, which results in a sum of all the MIR
in the communication channels larger than HKS. Even if one
or many channels are blocked, the information still finds its
destination. So, to treat networks composed by Q chaotic
systems, we expect that

�IC	 	 HKS, �8�

where �IC	=�k,lIC��k ,�l� / P represents the average amount
of MIR of the whole network, P is the number of communi-
cation channels given by P= �Q�Q−1�� /2, and Q is the num-
ber of neurons. For the neuron channel, we consider that CC
represents the maximal of �IC	 for many coupling configura-
tions. The average amount of redundancy in the network is

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �
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FIG. 2. �a� The baker’s map squeezes the rectangle above a in
�a� into the right rectangle in �b� and it squeezes the rectangle below
a in �a� into the left rectangle in �b�. Both rectangles in �a� are
stretched in the horizontal direction. From �a� to �b�, we represent
one application of the generalized baker’s map.
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FIG. 3. The asymptotic solution of the map in Fig. 2, formed by
a series of vertical strips forming a fractal set in the horizontal
direction.
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defined to be �R	=
�IC	

HKS
and, thus, if the network is completely

synchronized �R	=1, and if the network is completely un-
coupled �R	=0.

We consider a network composed of Q=4 bidirectionally
fully coupled neurons

ẋi = yi + 3xi
2 − xi

3 − zi + Ii + �
j

Aji�xj − xi� , �9�

ẏi = 1 − 5xi
2 − yi, żi = − rzi + 4r�xi + 1.6� .

The parameter that modulates the slow dynamics is set to r
=0.005, such that each neuron is chaotic. i and j, with j� i
assuming values within the set �1, . . . ,Q�. �k represents the
subsystem of the variables �xk ,yk ,zk� and �l represents the
subsystem of the variables �xl ,yl ,zl�, where k= �1, . . . ,Q
−1� and l= �k+1, . . . ,Q�. Aji=Aij �21� is the strength of the
electrical coupling between the neurons represented by � j
and �i. The external stimulus I1, in �1, is set to be equal to
I1=3.25−�I, and then, I2= I1+�I, I3= I1−�I, I4= I1+�I, with
�I=0.00001. Initial conditions are x=−1.3078+�, y
=−7.3218+�, and z=3.3530+�, where � is a uniform ran-
dom number within �0,0.001�.

Four synchronization phenomena are relevant to be con-
sidered �see Appendixes A and C�. Bursting phase synchro-
nization �BPS�, when at least one pair of neurons is phase
synchronous in the bursts, partial phase synchronization
�PPS� when at least one pair of neurons is phase synchronous
in the bursts and in the spikes, phase synchronization �PS�,
when all the pairs of neurons are phase synchronous in the
bursts and in the spikes, and complete synchronization �CS�.
An evidence for the presence of bursting or spiking phase
synchronization is found if the condition max��Nn� / P	1 is
satisfied, where �Nn=�k,l�Nk

n−Nl
n� and Nk

n represents the
number of spikes and bursts in �k, at the time the neuron �1
suffered its nth spike or burst. This condition is threshold
dependent, but it will be employed here for the purposes of
illustration.

This example, illustrated by Fig. 4, shows three funda-
mental characteristics of an active channel. �i� Excitation en-
hances HKS and the MIR of the communication channels.
With no coupling, the rate of information production in each
neuron is approximately HKS

�0� 
0.014 and �IC	 is null. For a
coupling strength of Akl,lk
0.01, each pair of neuron ex-
changes �in average� information with each other in a rate
larger than the individual rate with no coupling. So, an in-
crease in the coupling strength is simultaneously followed by
an increase in both HKS and the rate of information produc-
tion of each individual neuron, resulting in an increase of
�IC	, meaning also an increase in the MIR of the communi-
cation channels, a typical characteristic of a self-excitable
channel. �ii� Synchronization does not necessarily mean high
levels of information transmission. When the network
reaches its system capacity �Akl�0.08�, the spikes and the
bursts are highly desynchronous �Fig. 4�b�� by usual defini-
tions of phase synchronization �see Appendix C�, but both
�IC	 and the redundancy �R	 are high. At this point, we have
to remember that MIR means the amount of excitation minus

the amount of desynchronization. The amount of excitation
is of the order of the maximal Lyapunov exponent of the
network, which is large, since the network is excited, much
larger than the amount of desynchronization. On the other
hand, for Akl�0.23, when the neurons phase �PPS or PS� or
completely synchronize �Akl�0.23�, �IC	 abruptly drops ap-
proaching the low value of HKS, much lower than CS, as if
the whole network were formed by one single neuron. The
redundancy is high but few information can be transmitted in
the network. �iii� BPS provides an ideal environment for in-
formation transmission. When BPS is present, �IC	 and the
redundancy are high HKS
�IC	. That suggests that BPS
plays an important role in the reliable exchange of informa-
tion that demands rapid responses and a large amount of
information transmission. Each neuron maintains a high
level of independent activity �given by the desynchronous
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FIG. 4. �Color online� �a� Circles, squares, and diamonds show
HKS, �IC	, and �R�	= �R	 /10 for a network of four fully connected
neurons. The necessary conditions for the proper calculation of �IC	
are not satisfied for coupling strengths that produce stronger types
of PS �Akl= �0.15,0.25��, see Appendix A. There, �IC	 should be
estimated by a finite time MIR, indicated by �IC	 f. For this coupling
strength interval, we set �R�	=1. �b� Circles and squares represent
the maximal average spiking and bursting difference max��Nn / P�
after n=200 bursts, in a log vertical axis. Values of max��Nn / P�
smaller than the dashed line are evidence that there is PS. The upper
arrows in �a� indicate the coupling strength intervals for which we
find BPS �Akl
�0.1,0.23��, PPS �Akl= �0.23,0.245��, PS �Akl

= �0.245,0.25��, and CS �Akl�0.25�. To obtain the information in
units of bits we divide the related equations by ln�2�. IC is calcu-
lated using Eq. �B1�, which produces similar values to the ones
obtained by calculating the MIR from the entropy and joint entropy
of symbolic sequences generated from the trajectory of pair of
neurons.
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spikes� and simultaneously a moderate level of synchrony
�synchronism in the bursts� that allows a neuron to “talk” to
another. These characteristics are usually desirable in sensory
neurons �34� and in the ones responsible for motor reaction
processes.

VII. ACTIVE CHANNELS FORMED
BY NON-EQUAL ELEMENTS

Here, we briefly describe the dependence of the MIR on
the parameter mismatches between the elements forming an
active channel. For such a case, ���� and ���� typically differ,
as in Eq. �3�. As a consequence, the channel capacity is lower
than when the parameters do not mismatch and Eq. �B1�
should be considered as an upper bound �it might overesti-
mate the real value� for the MIR between the subspaces �k
and �l �35�. Also, a parameter mismatch might enhance the
value of the MIR if the coupling is kept constant while the
parameters are changed. For simplicity, let us represent an
active channel formed by two coupled unidimensional maps
by �x�n+1

��� ,x�n+1
��� �. Thus, ����, which gives how nearby trajecto-

ries exponentially diverge along the subspace �, can be cal-

culated from
�x�n+1

���

�x�n
��� +

�x�n+1
���

�x�n
��� , the sum of the terms in the row of

the Jacobian with respect to subsystem �, and ���� from
�x�n+1

���

�x�n
��� +

�x�n+1
���

�x�n
��� , the sum of the terms in the row of the Jacobian

with respect to subsystem �.
As an illustration, imagine the following chaotic channel:

xn+1
��� = �a − ��xn

��� + 2c�xn
��� − xn

����, mod�1�, xn+1
��� = axn

���

+ 2c�xn
��� − xn

����, mod�1� �10�

with a
1 and � is the parameter mismatch. Then, we arrive
at ����=ln�a�, ����=ln��a−���, �1=�� =ln���1+�2��, and �2

=��=ln���1−�2��, with �1=a−2c−� /2 and �2

=2��c2+�2 /16�. If there is no coupling �c=0�, and even if
��0, IC�� ,��=0. To see that, we assume �→0, which leads
us to �1=ln��a−� /2�� and �2=ln��a−4c−� /2��, and then we
use the expansion ln�a−��=ln�a�−� /2, in the exponents.
The larger � is, the smaller the channel capacity CC, which is
reached for parameters that lead to �2=0 �a−4c−� /2=1�,
when the maps, although not completely synchronous, have
close trajectories. If �2
0 �c	−1 /4−� /8+a /4�, then
IC�c ,�
0�� IC�c ,�=0�, which means that a parameter mis-
match can enhance the MIR of the channel, more precisely
by a maximal amount of � /4. That means that parameter
mismatches for sufficiently small coupling strengths enhance
the synchronization level in an active channel. Notice that
Eq. �B1� is indeed an upper bound for the MIR, being that
the difference between IC obtained from Eq. �B1� and the
one from Eq. �3� is of the order of �2, for small � and c, and
for larger c it is smaller than � /4. If �=0, then ����=����

=ln�a�, which results in CC=ln�a�, the maximal possible
value for the MIR. Finally, the system capacity CS=2 ln�a� is
reached when c=0 and �=0 �36�. This channel is not suscep-
tible for �=0. If ��0, it becomes susceptible, since CC


HKS
�r� =ln��a−���. However, independently on �, this chan-

nel is not self-excitable.

For larger HR neural networks �up to 50 neurons� de-
scribed by Eq. �9�, the system capacity is reached for a net-
work of equal neurons, but with a nonzero coupling strength.
We find that CS is reached for a small world network geom-
etry �37�, being that CS increases linearly with the number of
neurons Q by CS=13.75Q bits/burst. The larger Q is, the
smaller the coupling strengths, which are considered to be
equal. Also, the average number of connections, �, that each
neuron receives scales linearly with the number of neurons
as ��0.5Q.

Networks formed by HR neurons connected to their near-
est neighbors, forming a ring, can be regarded as models for
the small networks of electrically connected neurons found
in the Inferior Olive �38� that regulates the transmission of
information between the cerebellum and the cortex, and is
responsible for motor control and learning. In this type of
network, we find that the system capacity increases linearly
with the number of neurons by CS=9.5N bits/burst, being
achieved always for the same small coupling strength �0.08�.
Therefore, the capacity does not depend on the coupling
strength. Network configurations for which the system ca-
pacity is reached operate also with a large MIR in each com-
munication channel. This is an optimal configuration for net-
works found in the Inferior Olive that demand large amounts
of information transmission for an efficient cerebellar learn-
ing. Naturally, we do not expect that the neural networks
found in the Inferior Olive are formed by equal neurons. So,
the calculated channel and system capacities should be inter-
preted as an upper bound for these quantities in realistic
models of the networks found in there.

VIII. THE MUTUAL INFORMATION RATE BETWEEN
OTHER SUBSPACES

In this work, we are mainly interested in calculating the
MIR between the subspaces � and � �Eqs. �3� and �B1��.
That means that we are mainly interested in knowing the rate
of information that can be realized from a transmitter �one
element of the active channel� by measuring the signal of a
receiver �another element of the active channel�.

However, it is of general interest to learn how to calculate
the MIR between groups of elements or between different
subspaces of the active channel. For example, in many ex-
perimental situations, one cannot obtain the signal of an iso-
lated element but rather an average field, or average quantity,
such as the quantity x��, which can be imagined as an average
field �x�kl

� =x�k+x�l� between two elements.
As briefly described here, in fact, we can also calculate

the MIR between other subspaces. As an illustration, we con-
sider the calculation of the MIR between the subspaces de-
fined by the coordinate transformations x�� and x��, regarded
as IC�x�� ,x���.

Typically, we should expect that IC�x�� ,x���� IC�� ,�� and,
therefore, the MIR is coordinate dependent. While IC�� ,��
measures the rate with which information about the transmit-
ter � can be realized by observing the receiver �, IC�x�� ,x���
measures the rate with which information about x�� can be
realized by observing x��. Naturally, at a situation when CS
takes place, nothing about x�� can be said by observing x��,
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since x��=0, and therefore, IC�x�� ,x���=0. So, to know from
IC�x�� ,x��� if one element exchanges high amounts of infor-
mation with another element, not only IC�x�� ,x��� should be
low, but also ��.

Notice that if the network is composed by elements with a
linear dynamics �or piecewise linear for continuous dynam-
ics�, we can always find a linear transformation from which
IC�x�� ,x��� can be calculated from the state variables x�, or
IC�� ,�� from the transformed variables x�� and x��. Usually,
one would calculate IC�x�� ,x��� using the variables x�� and x��

and IC�� ,�� using the variables x�� and x��. Therefore, even if
a measurement cannot provide the signal of isolated ele-
ments in an active network, there might be situations in
which we can still calculate the mutual information rate ex-
changed between two isolated elements from the measure-
ments of averages.

IX. THE TIME-DEPENDENT (NOISY) ACTIVE CHANNEL

If all the elements forming the active channel suffer the
influence of the same time-dependent stimulus �or noise� and
the stimulus is completely uncorrelated with respect to the
variables x�� and x�� and also x��→0 �such that the Jacobian in
Eq. �A1� is approximately block diagonal�, then both expo-
nents �� and ��, calculated for the autonomous channel, are
not modified by the introduction of the stimulus. Also, if the
largest Lyapunov exponent of the channel is not affected by
the introduction of the stimulus, �� is also not modified.
Thus, if the previous conditions are satisfied, Eq. �B1� cal-
culated for the autonomous channel gives the upper bound
for the mutual information of the nonautonomous channel.

The periodic channel fully preserves the transmitted infor-
mation, however, it might transform it in a fractal set which
is vulnerable to noise. So, the information rate recovered in
the receiver can be sensitively dependent on the noise level
in the channel. Chaotic channels tend to destroy part of the
information transmitted, even without the presence of noise
����
0�. However, they might offer a nice way to deal
with additive noise. As shown in Ref. �28�, Gaussian noise
with small variance added to a chaotic trajectory can be com-
pletely filtered out. The action of more general types of time-
dependent stimulus that alters the dynamics of the active
channel still needs better clarification.

X. CONCLUSION

An active channel is an active network composed by dy-
namical systems. Every pair of elements forms a communi-
cation channel and the rate with which information is ex-
changed between two elements, a transmitter and a receiver,
is given by the mutual information rate �MIR� between them.
The maximum rate of information that can be transmitted in
a communication channel of an active channel is regarded as
the channel capacity CC and the maximum rate of informa-
tion produced in the whole active channel is regarded as
system capacity, the maximum of the KS entropy HKS, of the
active channel. All these maximums are calculated with re-
spect to many possible coupling strengths among the ele-
ments, for a given network topology.

We can organize the active channels in two main classes
periodic or chaotic. A chaotic �periodic� channel is composed
by a receiver that behaves in a chaotic �periodic� fashion, for
long time intervals. Chaotic channels formed by HR neuron
networks are self-excitable, which means that the channel
capacity CC is larger than HKS

0 , the KS entropy of all the
elements forming the active channel when they are un-
coupled. In a self-excitable channel, a transmitter and a re-
ceiver �together with all the other elements forming the chan-
nel� mutually increase their capacity for information
production, leading to an increase in their channel capacity.
So, the introduction of stimuli in a self-excitable active chan-
nel might increase its channel capacity for information trans-
mission. Not all chaotic channels present self-excitability.
For example, we have not verified such a property in active
channels formed by linearly coupled Rössler oscillators or by
linearly coupled Chua’s circuit �while in the double scroll
attractor regime�. It is to be expected that a periodic channel
is non-self-excitable.

More synchronization results in an increase of the MIR
between two elements in an active channel, regarded as
transmitter and receiver, if as the transmitter becomes more
synchronous with the receiver, simultaneously the KS en-
tropy also decreases, meaning that synchronization is accom-
panied by a reduction of the excitation in the channel. This
situation is to be expected in non-self-excitable channels. In
self-excitable channels, a large amount of information trans-
mission can be obtained when the bursts are phase synchro-
nous while the spikes are highly desynchronous.

Periodic channels might allow the complete transmission
of the information signal provided by the transmitter. On the
other hand, the transmitted information in a chaotic channel
might be lost due to the presence of nonsynchronous chaotic
trajectories, if the transmitter is weakly coupled to the re-
ceiver. However, while a periodic channel might be very
sensible to the presence of even arbitrarily small noise inten-
sities, chaotic channels might be robust.
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APPENDIX A: CONDITIONAL EXPONENTS AND
COMPLETE SYNCHRONIZATION (CS)

Assume x�k to describe the state variables of subsystem k.
The parallel and perpendicular subspaces are defined to be a
transformation in the variables of the subsystems that maxi-
mize the calculated mutual information. For the cases studied
here, the parallel subspace between �k and �l is defined as
x�kl

� =x�k+x�l, and the transversal subspace is defined as x�kl
�
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=x�k−x�l. For a network of Q elements, k= �1,Q−1� and l
= �k+1,Q�. Writing the equations of motion in these new
variables, one can separate the transformed equations into
subsystems that contain only terms of that subsystem. So, a
network of Q elements formed by systems of dimension m
�Rm�, can be broken down in Q�Q−1� /2 subsystems of di-
mensionality 2m �R2m�. Then, the conditional exponents of
the neural network between two subspaces measure the ex-
ponential divergence of nearby trajectories of the trans-
formed equations for these two subspaces, which in practice
is calculated using the following Jacobian in the method of
Ref. �12�:

�x�̇kl
�

�x�kl
�

�x�̇kl
�

�x�kl
�

�x�̇kl
�

�x�kl
�

�x�̇kl
�

�x�kl
�

�A1�

which is

3x� −
3�x�2+x�2�

4 + F 1 − 1 3x� − 3x�x�

2 0 0

− 5x� − 1 0 − 5x� 0 0

4r 0 − r 0 0 0

3x� − 3x�x�

2 + G 0 0 3x� −
3�x�2+x�2�

4
1 − 1

− 5x� 0 0 − 5x� − 1 0

0 0 0 4r 0 − r

,

where x stands for xkl. For a network of Q fully connected
neurons with equal coupling strengths F=−QAkl. When �
= ��Q−2� /2�x�ij

� −�k=1
Q x�k �with k� i , j� is either orders of mag-

nitude smaller than the quadratic terms �no synchronization�
or �=0 �CS�, then G
0. For parameter values close to or
when PPS or PS is present, the quadratic terms are also small
and G cannot be neglected. In Fig. 4, this happens for the
parameter region Akl ,Alk
�0.15,0.25�. There, Eq. �8� seems
to be violated. To resolve that, we force �
0, which leads to
G
0, a condition for which the Jacobian in Eq. �A1� can be
used. We set the initial conditions all equal, and integrate the
system for a small time interval �5 bursts which is equivalent
to about 50 spikes� to estimate a finite time averaged MIR,
indicated in this figure by �IC	 f. Within the time scale for
which phenomena happen in real biological neural networks,
periodic state as well as chaotic state in the asymptotic sense
might never be observed, but rather a transient state whose
subspaces x�� and x�� possess finite time conditional expo-
nents. Finite time quantities are well defined in dynamical
systems.

For Q=2, F=−2Akl and G=0. When CS takes place in a
network formed by Q neurons, the only term of the Jacobian
that changes is F. For this Jacobian, we can calculate that CS
appears if F�Q�	F�Q=2�, where F�Q=2�=−2Akl�Q=2�,
with Akl�Q=2�=0.5 being the coupling for which complete
synchronization appears for a configuration of two coupled
neurons �see also Ref. �39��. So, the coupling to reach CS is
Akl�1 /Q, when the second largest Lyapunov as well as all

transversal conditional exponents are negative. At this point,
the trajectory distance between any pair of neurons tends to
zero.

For the active channels composed by coupled one-
dimensional maps

xn+1
�j� = 2xn

�j� + �
i=1

Q

2c�xn
�i� − xn

�j��, mod�1� ,

we can calculate the mutual information in each communi-
cation channel exactly, with no need of any special condi-
tions. The network equations can be broken down in sub-
spaces that depend only on the parallel or transversal
variables of that subspace. So, xn+1

�kl��=Fxn
�kl�� and xn+1

�kl��

=Gxn
�kl�� +H�xn

�kl���. H does not participate in the calculation
of the conditional exponents and can be ignored. For a fully
connected network formed by Q maps with equal coupling
strengths c, F=2�1−Qc�, and G=2. The conditional expo-
nents are ��=ln��F�� and �� =ln��G��. For a network of Q
=4 maps bidirectionally connected to their nearest neighbors
forming a closed ring, i.e., x�i� is connected to x�i+1� and to
x�i−1�, and x�Q� is connected to x�Q−1� and to x�1�, then F
=2�1−2c� �F=2�1−c�� and G=2 for subspaces whose pair
of systems have a direct connection �no connection�. This
network completely synchronizes when ��
0, and thus,
when c
1 /2.

APPENDIX B: INFORMATION DIMENSION, LYAPUNOV
EXPONENTS AND MIR

We consider an active channel formed by only one com-
munication channel, composed by two coupled unidimen-
sional systems which produce an attractor � with at most two
positive Lyapunov exponents. � is corse grained with vol-
umes of size � �14�, and for �→0, we have that
�iPi� ln Pi� / ln���=D1, with D1 being the information dimen-
sion of �, a quantity that measures the information content of
� and Pi� is the probability of finding a trajectory point in one
of the i volumes of size �. The average probability �P	 of
finding a trajectory following an itinerary visiting one of the
possible m combinations of sequences of L volumes of size �

for a time interval L� is �P	�exp−�L�j
+D1

�j�
•�j, and D1

�j�

�� jD1
�j�=D1 and D1

�j�� �0,1�� are the partial information di-
mensions �40�, a quantity that measures the information con-
tent of � along the direction j, either parallel or orthogonal to
the trajectory, and � j are the Lyapunov exponents in the di-
rection j. • is the inner product. Assuming that the distribu-
tion of trajectory points is smooth along unstable directions
�associated with positive exponents� and the system pos-
sesses a SRB measure �12�, D1

�j�→1 if � j 
0. From Refs.
�16,26�, 1 / ��L��mPi ln Pi=HKS for SRB systems. To under-
stand how that is derived, we assume uniformity in the prob-
ability distribution, −�mPi ln Pi=−ln�P	. Then, the term
HKS

��,�� �in Eq. �3�� can be calculated by knowing that
−ln�P	 / ��L�
� j

+� j. Now, we make the intuitive hypothesis
that the terms ���� and ����, in Eq. �2�, preserve the physical
quantities used to calculate ���,��. So, if ���,�� is a function
of the information dimension and the Lyapunov exponents of
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the trajectory on the subspaces �� ,��, similarly, ���� and ����

should be a function of these quantities. This hypothesis pro-
vides the terms D1

���������+D1
��������� in Eq. �3�. If a projec-

tion of � onto the lower-dimensional subspaces � and �
produces a fractal set, one has to consider the absolute value
of the negative Lyapunov exponent �26�. Otherwise, D1

���

=D1
���=max�D1

�j��, assuming that the subspaces � and � con-
tain only the dynamics of the expanding directions, i.e., ei-
ther they are unidimensional or they can be reduced to a
unidimensional subspace by a mapping of the flow �18�. For
most of the chaotic channels studied here, max�D1

�j��=1, for
typical projections of �. Further, we calculate the Lyapunov
exponents of the transmitter and the receiver as if they were
detached from each other. If the elements that compose the
channel have equal parameters ����=����=�1=��, otherwise,
���������.

For the considered networks, each pair of elements, in the
transformed variables of the parallel and transversal sub-
spaces, forms a composed subspace ��k ,�l� that produces at
most two positive conditional exponents. The previous
analysis applies for each communication channel of this net-
work, since each pair of neurons has a dynamics equivalent
to a bidimensional discrete map with at most two positive
conditional Lyapunov exponents, a larger one �kl

� and a
smaller one �kl

�. Then,

IC��k,�l� = �kl
� − �kl

� �B1�

if �kl
�
0, or IC��k ,�l�=�kl

� , otherwise. To derive Eq. �B1�,
we have used that ���k�=���l�=�kl

� , D1
�.�=max�D1

�j��=1, and
HKS

��k,�l� is the sum of all positive conditional exponents of the
composed subspace ��k ,�l�. This can be done whenever the
subspace ��k ,�l� is separable from the whole network. If the
elements forming the channel have different parameters and
one still wants to use Eq. �B1�, keep in mind that such an
equation might provide an upper bound for the MIR between
these two subspaces.

For arbitrary networks, for simplicity let us imagine two
coupled oscillators x���� and x����, coupled by a term c, the
terms ���� and ���� from Eq. �3� can be analytically or semi-
analytically calculated if the coupling is either sufficiently
small �such that the elements forming the network are almost
decoupled� or sufficiently large �such that the whole network
has a high level of synchrony�. At this situation, ���� ������ is
the Lyapunov exponent in the subspace of the oscillator x����

�x�����, i.e., assume x����=0 �x����=0� and c=0, and then calcu-
late the Lyapunov exponents by the usual methods. For such
coupling strengths, this is an equivalent approach to the one
described in Sec. VII. For other coupling strengths, we ex-
pect that D1

���������+D1
���������−HKS

��,��	HKS
��,��. If not, that

points to the existence of trajectory foldings in the lower-
dimensional subspaces � and � which results in an overesti-
mation of the Lyapunov exponents ���� and ����. In such
cases, D1

�¯� should be underestimated �41�, so balancing the
action of the trajectory foldings.

If the trajectory is very close to the synchronization mani-

fold and so, x�1
x�2
 ¯ 
x�Q, the term �x�̇kl
� /�x�kl

� in Eq. �A1�
gives the largest Lyapunov exponent � of the network which

equals the largest exponent of one neuron, and thus, Eq. �B1�
can be estimated by IC��k ,�l�=�−�kl

�. This equation agrees
with the intuitive idea that the amount of information ex-
changed between two systems within a large network is
given by the amount of information production of one sys-
tem ��� minus the error in the transmission between both
systems ��kl

��.

APPENDIX C: PHASE AND PHASE SYNCHRONIZATION

Phase synchronization �7� is a phenomenon defined by

��k − m�l� 	 r , �C1�

where �k and �l are the phases of two neurons �k and �l,
m=�l /�k is a real number �42�, and �k and �l are the aver-
age frequencies of oscillation of the neurons �k and �l, and r
is a finite number �43�. In this work, we have used in Eq.
�C1� m=1, which means that we search for �k :�l=1:1 �ra-
tional� phase synchronization �7�. If another type of
�k :�l-PS is present, the methods in Refs. �43,46,47� can
detect.

The phase � is a function constructed on a 2D subspace,
whose trajectory projection has proper rotation, i.e., it rotates
around a well defined center of rotation. So, the phase is a
function of a subspace. Usually, a good 2D subspace of the
HR neurons is formed by the variables x and y, and when-
ever there is proper rotation in this subspace the phase can be
calculated by �44�

��t� = �
0

t ẏx − ẋy

�x2 + y2�
dt . �C2�

If there is no proper rotation in the subspace �x ,y� one can
still find proper rotation in the velocity subspace �ẋ , ẏ� and a
phase can be defined by �44�

��t� = �
0

t ÿẋ − ẍẏ

�ẋ2 + ẏ2�
dt . �C3�

If a good 2D subspace can be found, one can also define a
phase by means of Hilbert transformation, which basically
transforms an oscillatory scalar signal into a two components
signal �45�. In the active channel of Eq. �9�, for the coupling
strength interval Akl
�0,0.05�, the subspace �x ,y� has
proper rotation, and therefore, phase is well defined and can
be calculated by Eq. �C2�. However, for this coupling inter-
val, Eq. �C1� is not satisfied, and therefore, there is no PS
between any pair of neurons in the subspace �x ,y�.

For the coupling strength interval Akl
�0.05,0.23�, the
neurons trajectories lose proper rotation both in the sub-
spaces �x ,y� and �ẋ , ẏ�. The phase cannot be calculated by
Eq. �C2� or by Eq. �C3�. That is due to the fact that the
chaotic trajectory gets arbitrarily close to the neighborhood
of the equilibrium point �x ,y�= �0,0�, a manifestation that a
homoclinic orbit to this point exists.

In fact, the Hilbert transformation also fails to provide the
phase from either scalar signals x or y, since these signals no
longer present any longer an oscillatory behavior close to the
equilibrium point. In such cases, even the traditional tech-
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nique to detect PS by defining the phase as a function that
grows 2�, whenever a trajectory component crosses a
threshold cannot be used. Since the trajectory comes arbi-
trarily close to the equilibrium point, no threshold can be
defined such that the phase difference between pairs of neu-
rons is bounded. Notice that by this definition the phase dif-
ference equals 2��N. For that reason, Fig. 4�b� would re-
main roughly as it is even if the thresholds that define a spike
and a burst are modified or even if another variable �either y
or z� is used. In this figure, a burst �spike� in a neuron �k is
considered to start or end if xk crosses the threshold defined
by xk=−1.0 �xk=0.0�.

In order to check if PS indeed exists in at least one sub-
space, alternative methods of detection can be employed as
proposed in Refs. �46,47�. In short, if PS exists in a subspace
then by observing one neuron trajectory at the time the other
bursts or spikes �or any typical event�, there exists at least
one special curve � in this subspace, for which the points
obtained from these conditional observations do not visit the
neighborhood of �. A curve � is defined in the following
way. Given a point x0 in the attractor projected on the sub-
space of one neuron where the phase is defined, � is the
union of all points for which the phase, calculated from this
initial point x0 reaches n�r	, with n=1,2 ,3 , . . . ,� and �r	 a
constant, usually 2�. So, note that an infinite number of
curves � can be defined. For coupled systems with suffi-
ciently close parameters that present in some subspace
proper rotation, if the points obtained from the conditional
observations do not visit the whole attractor projection on
this subspace, one can always find a curve � that is far away
from the conditional observations. Therefore, for such cases,
to state the existence of PS one just has to check if the
conditional observations are localized with respect to the at-
tractor projection on the subspace where the phase is calcu-
lated.

Conditional observations of the neuron trajectory �k in the
subspace �x ,y�, whenever another neuron �l spikes, in the
system modeled by Eqs. �9�, are not localized with respect to
a curve �, for the coupling strength 0.05
Akl
0.23. An
example can be seen in Fig. 5�a�, for Akl=0.1. The set of
points produced by the conditional observations are repre-
sented by dark gray circles �red online�, and the attractor by
the light gray points �green online�. Therefore, there is no PS
in the subspace �x ,y�. However, the points obtained from the
conditional observations do not visit the whole attractor in
the subspace �x ,y�. This is evidence that there is PS in some
other subspace.

In order to know on which subspace PS occurs, we pro-
ceed in the following way. We reconstruct the neuron attrac-
tors by means of the time-delay technique, using the variable
z. This variable describes the slow time-scale, responsible
for the occurrence of bursts. The reconstructed attractor
z�t��z�t−�� has proper rotation �see Fig. 5�b�� and the
points obtained from the conditional observations do not
visit the neighborhood of a curve �, then there is PS in this
subspace. Indeed, we find localized sets with respect to a
curve � in the system of Eqs. �9�, in the reconstructed sub-
space �z�t��z�t−���, for Akl�0.1.

So, for the parameter interval Akl= �0.1,23�, there is no PS
in the subspace �x ,y� but there is PS in the subspace of the

variable z. In this type of synchronous behavior, the bursts
are phase synchronized while the spikes are not. This behav-
ior is regarded as BPS.

For simplicity in the analysis, we say that BPS happens
when at least one pair of neurons is phase synchronous in the
bursts. PPS happens in the network when it is true that for at
least one pair of neurons Eq. �C1� is satisfied by the phases
as defined by either Eq. �C2� or Eq. �C3�. In addition, at the
coupling strengths for which PPS appears, one positive
Lyapunov and one positive transversal conditional exponent
become negative. At the coupling strengths for which Eq.
�C1� is satisfied for all pair of neurons �there is PS�, the
second largest Lyapunov exponent and all the transversal
conditional exponents become nonpositive.

Notice that these phenomena happen in a hierarchical way
organized by the “intensity” of synchronization. The pres-
ence of a stronger type of synchronization implies in the
presence of other softer types of synchronization in the fol-
lowing order: CS→PS→PPS→BPS.

APPENDIX D: RECOVERY OF INFORMATION

Equations �2� and �B1� give the amount of information
that can be retrieved in the receiver per time unit. Imagine
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FIG. 5. �Color online� The network of Eqs. �9� for Akl=0.1. The
curve �, a continuous curve transversal to the trajectory, is pictori-
ally represented by the straight line �. �a� The conditional observa-
tions are not localized and thus there is no PS in this subspace. The
light gray line �green online� represents the attractor projection on
the subspace �x ,y� of the neuron �2, and filled gray circles �red
online� represent the points obtained from the conditional observa-
tions of the neuron �2 whenever the neuron �4 spikes. The point
�x ,y�= �0.0� does not belong to �. �b� The conditional observations
are localized and thus there is PS in this subspace. Light gray dots
�green online� represent the reconstructed attractor z2�t��z2�t−��,
for �=30, and filled circles �red online� represent the points ob-
tained from the conditional observation of neuron �2, whenever the
reconstructed trajectory of the neuron �4 crosses the threshold line
z4�t−��=3.25 and z4�t�
3.
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the neural network. If, on average, a burst happens for a time
interval �T, one can retrieve in the receiver an amount IC�T
of information about the transmitter per burst. It is often
desirable to know how much information one single obser-
vation with precision � can provide. Assuming that observa-
tions are taken over in time intervals not smaller than �t
=−ln��� /��, the maximal amount of information, Im, that can
be retrieved in the receiver about the transmitter in each ob-
servation is estimated by Im= ��� /�� −1�ln���. We arrive at
this result by assuming �t to be the memory time of the
channel, the time interval for which observations in the re-
ceiver trajectory with precision �, at a time t0, will provide
no information about the transmitter trajectory, at the time
t0+�t, and Im= IC��t.

APPENDIX E: TRANSIENT DYNAMICS

If an active channel is being externally stimulated or if the
initial conditions are far away from the asymptotic �for large
time intervals� stable state �periodic or chaotic behavior�, the
channel will present a transient dynamics. In such a case,
Eqs. �3� and �B1� should remain valid by the use of finite
time conditional or Lyapunov exponents �assuming D1

j =1�.
As an illustrative example, an active channel that has an
asymptotic chaotic attractor might have to be treated as a
periodic channel �space contracting dynamics�, if the initial
conditions are far away from the chaotic set and the dynam-
ics is dominated by the stable directions.
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